首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10599篇
  免费   1485篇
  国内免费   675篇
化学   5231篇
晶体学   59篇
力学   852篇
综合类   82篇
数学   974篇
物理学   5561篇
  2023年   85篇
  2022年   145篇
  2021年   215篇
  2020年   267篇
  2019年   314篇
  2018年   258篇
  2017年   300篇
  2016年   451篇
  2015年   405篇
  2014年   520篇
  2013年   948篇
  2012年   585篇
  2011年   617篇
  2010年   464篇
  2009年   610篇
  2008年   637篇
  2007年   717篇
  2006年   603篇
  2005年   467篇
  2004年   497篇
  2003年   478篇
  2002年   378篇
  2001年   315篇
  2000年   301篇
  1999年   234篇
  1998年   268篇
  1997年   171篇
  1996年   154篇
  1995年   135篇
  1994年   148篇
  1993年   114篇
  1992年   99篇
  1991年   95篇
  1990年   66篇
  1989年   88篇
  1988年   71篇
  1987年   60篇
  1986年   46篇
  1985年   57篇
  1984年   60篇
  1983年   23篇
  1982年   50篇
  1981年   48篇
  1980年   29篇
  1979年   32篇
  1978年   27篇
  1977年   19篇
  1976年   27篇
  1974年   8篇
  1973年   19篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
1.
An adaptive tracking design strategy based on quantized state feedback is developed for uncertain nonholonomic mobile robots with unknown wheel slippage effects. All state variables and control torques are assumed to be quantized by the state and input quantizers, respectively, in a network control environment. Thus, the quantized state feedback information is only available for the tracking control design. An approximation-based adaptive controller using quantized states is recursively designed to ensure the robust adaptive tracking against unknown wheel slippage effects where the quantized-states-based adaptive mechanism is derived to compensate for unknown wheel slippage effects, system nonlinearities, and quantization errors. The boundedness of the quantization errors and estimated parameters in the closed-loop system is analyzed by presenting some theoretical lemmas. Based on these lemmas, we prove the uniform ultimate boundedness of closed-loop signals and the convergence of the trajectory tracking error in the presence of wheel slippage effects. Simulations verify the effectiveness of the resulting tracking scheme.  相似文献   
2.
Perdew-Burke-Ernzerhof (PBE) and PBE adapted for solids (PBEsol) are exchange-correlation (xc) functionals widely used in density functional theory simulations. Their differences are the exchange, μ, and correlation, β, coefficients, causing PBEsol to lose the Local Spin Density (LSD) response. Here, the μ/β two-dimensional (2D) accuracy landscape is analyzed between PBE and PBEsol xc functional limits for 27 transition metal (TM) bulks, as well as for 81 TM surfaces. Several properties are analyzed, including the shortest interatomic distances, cohesive energies, and bulk moduli for TM bulks, and surface relaxation degree, surface energies, and work functions for TM surfaces. The exploration, comparing the accuracy degree with respect experimental values, reveals that the found xc minimum, called VV, being a PBE variant, represents an improvement of 5% in mean absolute percentage error terms, whereas this improvement reaches ~11% for VVsol, a xc resulting from the restoration of LSD response in PBEsol, and so regarded as its variant.  相似文献   
3.
Cover Image     
The novel heteronuclear complexes [{cis-PtCl (NH3)(μ-pyrazine)ZnCl (terpy)}](ClO4)2 (Pt-L1-Zn) and [{cis-PtCl (NH3)(μ-4,4′-bipyridyl)ZnCl (terpy)}](ClO4)2 (Pt-L2-Zn) (where terpy = 2,2′:6′,2′′-terpyridine, L1 = pyrazine, L2 = 4,4′-bipyridyl) were synthesized and characterized. The pKa values were determined, and based on them it was established that the π-acceptor ability of the pyrazine bridging ligand is more affective on lower pKa values. The kinetic measurements of the substitution reactions with biologically relevant ligands, such as guanosine-5′-monophosphate (5′-GMP), inosine-5′-monophosphate (5′-IMP) and glutathione (GSH), were studied at pH 7.4. The reactions were followed under pseudo-first-order conditions by UV–Vis spectrophotometry. The order of reactivity of the investigated biomolecules for the first reaction is 5′-GMP > 5′-IMP > GSH, while for the second is 5′-IMP > GSH. Pt-L1-Zn complex is more reactive than Pt-L2-Zn. The cytotoxic activity of heteronuclear Pt-L1-Zn and Pt-L2-Zn complexes was determined on human colorectal cancer cell line (HCT-116) and human breast cancer cell line (MDA-MB-231). Both complexes significantly reduced cell viability on tested cell lines and exerted significant cytotoxic effects, with better effect on HCT-116 cells than cisplatin, especially after 72 hr (IC50 < 0.52 μM). The Pt-L2-Zn complex showed higher activity against human breast cancer cells (MDA-MB-231) than cisplatin after 72 hr. The higher reactivity toward DNA constituent and significant cytotoxic activity may be attributed to the different geometry, Lewis acidity of different metal centers, as well as, to choice of bridging ligands.  相似文献   
4.
An amazing phenomenon of the relative magnitude of modulus of two liquid-crystal (LC) gels is found inverted under/above their phase transition temperature TLC-iso, which is further proved to be caused by their diverse morphology flexibility. By testing the polarity of two LCs, gelator POSS-G1-Boc (POSS=polyhedral oligomeric silsesquioxane) was discovered to self-assemble into more flexible structures in a relatively low polar LC, whereas more rigid ones are formed in higher polar LC. Hence, a fitting function to connect morphology flexibility with solvent polarity was established, which can even be generalized to a number of common solvents. Experimental observations and coarse-grained molecular dynamics simulations revealed that solvent polarity mirrors a “Morse code”, with each “code” corresponding to a specific morphology flexibility.  相似文献   
5.
We report the results of our investigation of magnetization and heat capacity on a series of compounds Ce1?xYxNiGe2 (x=0.1,0.2 and 0.4) under the influence of external magnetic field. Our studies of the thermodynamic quantity ?dM/dT on these compounds indicate that magnetic frustration persists in Ce0.9Y0.1NiGe2, as also reported for the parent compound CeNiGe2. The weak signature of this frustration is also noted in Ce0.8Y0.2NiGe2, whereas, it is suppressed in Ce0.6Y0.4NiGe2. Heat capacity studies on Ce0.9Y0.1NiGe2 and Ce0.8Y0.2NiGe2 indicate the presence of a new magnetic anomaly at high field which indicates that quantum criticality is absent in these compounds. However, for Ce0.6Y0.4NiGe2 such an anomaly is not noted. For this later compound, the magnetic field (H) and temperature (T) dependence of heat capacity and magnetization obey H/T scaling above critical fields. However, the obtained scaling critical parameter (δ) is 1.6, which is away from mean field value of 3. This deviation suggests the presence of unusual fluctuations and anomalous quantum criticality in these compounds. This unusual fluctuation may arise from disorderness induced by Y-substitution.  相似文献   
6.
CH3NH3PbBr3 perovskite quantum dots (PQDs) are synthesized by using four different linear alkyl phosphonic acids (PAs) in conjunction with (3-aminopropyl)triethoxysilane (APTES) as capping ligands. The resultant PQDs are characterized by means of XRD, TEM, Raman spectroscopy, FTIR spectroscopy, UV/Vis, photoluminescence (PL), time-resolved PL, and X-ray photoelectron spectroscopy (XPS). PA chain length is shown to control the PQD size (ca. 2.9–4.2 nm) and excitonic absorption band positions (λ=488–525 nm), with shorter chain lengths corresponding to smaller sizes and bluer absorptions. All samples show a high PL quantum yield (ca. 46–83 %) and high PL stability; this is indicative of a low density of band gap trap states and effective surface passivation. Stability is higher for smaller PQDs; this is attributed to better passivation due to better solubility and less steric hindrance of the shorter PA ligands. Based on the FTIR, Raman, and XPS results, it is proposed that Pb2+ and CH3NH3+ surface defects are passivated by R−PO32− or R−PO2(OH), whereas Br surface defects are passivated by R−NH3+ moieties. This study establishes the combination of PA and APTES ligands as a highly effective dual passivation system for the synergistic passivation of multiple surface defects of PQDs through primarily ionic bonding.  相似文献   
7.
The E. coli siderophore enterobactin, the strongest FeIII chelator known to date, forms hexacoordinate complexes with SiIV, GeIV, and TiIV. Synthetic protocols have been developed to prepare non-symmetric enterobactin analogues with varying denticities. Various benzoic acid residues were coupled to the macrocyclic lactone to afford a diverse library of ligands. These enterobactin analogues were bound to SiIV, GeIV, and TiIV, and the complexes were investigated through experimental and computational techniques. The binding behavior of the synthesized chelators enabled assessment of the contribution of each of the phenolic hydroxy groups in enterobactin to metal-ion complexation. It was found that at least four O-donors are needed for enterobactin derivatives to act as metal binders. Density functional theory calculations indicate that the strong binding behavior of enterobactin can be ascribed to a diminished translational entropy penalty, a common feature of the chelate effect, coupled with the structural arrangement of the three catechol moieties, which allows the triseryl base to be installed without distorting the preferred local metal-binding geometry of the catecholate ligands.  相似文献   
8.
Four flexible ligands with different lengths, degrees of flexibility, and steric bulk were synthesized and used to prepare metal-directed assemblies. Interestingly, minor differences among the ligands led to products with dramatically different topologies: a binuclear D -shaped macrocycle, tetranuclear rectangles, and hexanuclear trefoil knots. The interconversion of the trefoil-shaped complexes was also investigated. This contribution introduces a rare ligand-controlled trefoil–rectangle shape transformation in solution.  相似文献   
9.
Thienoguanosine (thG) is an isomorphic analogue of guanosine with promising potentialities as fluorescent DNA label. As a free probe in protic solvents, thG exists in two tautomeric forms, identified as the H1, being the only one observed in nonprotic solvents, and H3 keto–amino tautomers. We herein investigate the photophysics of thG in solvents of different polarity, from water to dioxane, by combining time-resolved fluorescence with PCM/TD-DFT and CASSCF calculations. Fluorescence lifetimes of 14.5–20.5 and 7–13 ns were observed for the H1 and H3 tautomers, respectively, in the tested solvents. In methanol and ethanol, an additional fluorescent decay lifetime (≈3 ns) at the blue emission side (λ≈430 nm) as well as a 0.5 ns component with negative amplitude at the red edge of the spectrum, typical of an excited-state reaction, were observed. Our computational analysis explains the solvent effects observed on the tautomeric equilibrium. The main radiative and nonradiative deactivation routes have been mapped by PCM/TD-DFT calculations in solution and CASSCF in the gas phase. The most easily accessible conical intersection, involving an out-of plane motion of the sulfur atom in the five-membered ring of thG, is separated by a sizeable energy barrier (≥0.4 eV) from the minimum of the spectroscopic state, which explains the large experimental fluorescence quantum yield.  相似文献   
10.
Four simple methods are evaluated to determine their accuracies for establishing the interface location in secondary ion mass spectrometry intensity depth profiles of organic layers where matrix effects have not been measured. Accurate location requires the separate measurement of each ion's matrix factor. This is often not possible, and so estimates using matrix-less methods are required. Six pure organic material interfaces are measured using many secondary ions to compare their locations from the four methods with those from full evaluation with matrix terms. For different secondary ions, matrix effects cause the apparent interface positions to vary over 20 nm. The shifts in the intensity profiles on going from a layer of P into a layer of Q are in the opposite direction to that for going from Q into P, so doubling layer thickness errors. The four methods are as follows: M1, use of the median interface position in the intensity profiles for the five lightest ions for 15 ≤ m/z ≤ 150; M2, extrapolation of the position for each ion to m/z = 0 for ions with m/z ≤ 150; M3, as M2 but for m/z ≤ 300; and M4, the extreme positions for all m/z ≤ 100. Comparison with the location using matrix terms shows their ranking, from best to worst, to be M4, M3, M1, and M2 with average errors of 10%, 12%, 14%, and 17%, respectively, of the profile interface full widths at half maximum. Use of pseudo-molecular ions is very much poorer, exceeding 50%, and should be avoided.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号